

THE ASIAN CONGRESS **OF STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION 2024** (ACSMO 2024)

Organized by

Dalian University of Technology Zhengzhou University

Sponsored by

The Asian Society for Structural and Multidisciplinary Optimization The Chinese Society of Theoretical and Applied Mechanics The Society of Theoretical and Applied Mechanics of Liaoning Province State Key Laboratory of Structural Analysis Optimization and CAE Software for Industrial Equipment School of Mechanics and Aerospace Engineering, Dalian University of Technology National Engineering Research Center for Advanced Polymer Processing Technology

MAY 19-23, 2024 ZHENGZHOU, CHINA

Welcome Message ····· Organization · · · · · · · · Conference Topics · · · · · Plenary Lectures · · · · · · Keynote Lectures · · · · · Conference Venue ····· Program at a Glance · · · · Social Program · · · · · · Session Schedule · · · · · Technical Program · · · · ·

CONTENTS

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	.1
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	.8
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2	25
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2	26
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2	8
,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2	.9
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3	1

WELCOME MESSAGE

On behalf of the organizing committee, we are very pleased to invite you to participate in the Asian Congress of Structural and Multidisciplinary Optimization 2024 (ACSMO 2024) to be held in Zhengzhou, China, during May 19-23,2024.

Structural and multidisciplinary optimization is a hot topic in both theoretical research and engineering applications. Following the successful eight CJK-OSM conferences (Xian, China in 1999; Busan, Korea in 2002; Kanazawa, Japan in 2004; Kunming, China in 2006; Jeju, Korea in 2008; Kyoto, Japan in 2010; Huangshan, China in 2012; Gyeongju, Korea in 2014) and four ACSMO congresses (Nagasaki, Japan in 2016; Dalian, China in 2018; Krean, online in 2020; Matsue, on-site and on-line, Japan in 2022), ACSMO 2024 will be held in the famous city Zhengzhou, China, in May 19-23,2024.

ACSMO is a series of biennial congress which have stimulated and promoted researches and interests in all aspects of structural and multidisciplinary

optimization. It is an official conference sponsored by ISSMO (International Society of Structural and Multidisciplinary Optimization) and ASSMO (Asian Society of Structural and Multidisciplinary Optimization). As before, ACSMO 2024 will be a forum for exchange of recent research ideas and fostering new developments and new applications from various fields. We are most happy to welcome people not only from Asian countries but also from any other areas of the world, and we hope ACSMO 2024 will encourage joint researches among researchers, practicing engineers and students of all countries.

Gang Li General Chair, ACSMO 2024

ORGANIZATION

HONORARY CHAIR

Gengdong Cheng, Dalian University of Technology, China

GENERAL CHAIR

Gang Li, Dalian University of Technology, China

CO-CHAIR

Yoshihiro Kanno, The University of Tokyo, Japan Jae Woo Lee, Konkuk University, Korea

SECRETARY

Peng Hao, Dalian University of Technology, China Masakazu Kobayashi, Toyota Technological Institute, Japan Ikjin Lee, KAIST, Korea

ORGANIZING COMMITTEE

Xu Guo, Dalian University of Technology, China Xu Han, Hebei University of Technology, China Hai Huang, Beihang University, China Kazuhiro Izui, Kyoto University, Japan Junji Kato, Nagoya University, Japan Satoshi Kitayama, Kanazawa University, Japan Nozomu Kogiso, Osaka Metropolitan University, Japan Sangho Kim, Konkuk University, Korea Dooho Lee, Dong-eui University, Korea Jongsoo Lee, Yonsei University, Korea Seungjae Min, Hanyang University, Korea Masatoshi Shimoda, Toyota Technological Institute, Japan Bo Wang, Dalian University of Technology, China Byeng Dong Youn, Seoul National University, Korea Weihong Zhang, Northwestern Polytechnical University, China

SCIENTIFIC COMMITTEE

Takanori Chihara, Kanazawa University, Japan Jianbin Du, Tsinghua University, China Liang Gao, Huazhong University of Science and Technology, China

Gang-Won Jang, Sejong University, Korea In Gwun Jang, KAIST, Korea Chao Jiang, Hunan University, China **Zhan Kang**, Dalian University of Technology, China Masakazu Kobayashi, Toyota Technological Institute, Japan Ikjin Lee, KAIST, Korea Jaewook Lee, GIST, Korea Kyunghoon Lee, Pusan National University, Korea Shutian Liu, Dalian University of Technology, China Yoojeong Noh, Pusan National University, Korea Zhiping Qiu, Beihang University, China Akihiro Takezawa, Waseda University, Japan Kentaro Yaji, Osaka University, Japan Makoto Yamakawa, Tokyo University of Science, Japan Yohei Yokosuka, Kagoshima University, Japan Kazuo Yonekura, The University of Tokyo, Japan Gil Ho Yoon, Hanyang University, Korea Ming Zhou, Altair Engineering Pvt Ltd, China

ADVISORY BOARD

Masao Arakawa, Waseda University, Japan **Gengdong Cheng**, Dalian University of Technology, China

Dong-Hoon Choi, PIDOTECH Inc, Korea Joo Ho Choi, Korea Aerospace University, Korea Baoyan Duan, Xidian University, China Daining Fang, Peking University, China Hiroshi Hasegawa, Shibaura Institute of Technology, Japan Yoon Young Kim, Seoul National University, Korea Tae Hee Lee, Hanyang University, Korea Shinji Nishiwaki, Kyoto University, Japan Makoto Ohsaki, Kyoto University, Japan Yunkang Sui, Beijing University of Technology, China Katsuyuki Suzuki, The University of Tokyo, Japan Michael Yu Wang, Chinese University of Hong Kong, China Sung Kie Youn, KAIST, Korea

LOCAL ORGANIZING COMMITTEE

Guohai Chen, Dalian University of Technology, China **Zonglian Du**, Dalian University of Technology, China Man Guan, Dalian University of Technology, China Peng Hao, Dalian University of Technology, China Wanxin He, Dalian University of Technology, China Yaling Jia, Dalian University of Technology, China Ming Li, Dalian University of Technology, China

Qian Li, Zhengzhou University, China Chuntai Liu, Zhengzhou University, China Xianhu Liu, Zhengzhou University, China Zhenyu Liu, CIOMP CAS, China Mu Qu, Dalian University of Technology, China Jun Yan, Dalian University of Technology, China Weisheng Zhang, Dalian University of Technology, China

CONFERENCE TOPICS

1. Optimization Methods

- 1.1 Optimization theories and algorithms 1.2 Design sensitivity analysis and global optimization 1.3 Parallel (or grid) computing in optimization 1.4 Multiobjective optimization
- 1.5 Probabilistic, heuristic, stochastic, evolutionary methods

2. Shape and Topology Optimization

2.1 Multiscale topology optimization 2.2 Topology optimization of metamaterials 2.3 Topology optimization of advanced materials and smart structures 2.4 Emerging topology and shape optimization techniques in design 2.5 Large-scale topology optimization 2.6 AI-based and data driven shape and topology optimization 2.7 Multi-physics topology optimization

3. Design under Uncertainty

- 3.1 Uncertainty modeling and uncertainty propagation
- 3.2 Reliability analysis and reliability-based design optimization
- 3.3 Robust design optimization
- 3.4 Model verification and validation
- 3.5 Time-dependent reliability analysis and design

4. Approximations, Surrogates, and Metamodeling

- 4.1 Approximation techniques
- 4.2 Approximation-based design optimization
- 4.3 Error and convergence studies
- 4.4 Model order reduction and benchmarking studies

5. Optimization in Engineering Applications

- 5.1 Acoustic and vibration problems
- 5.2 Additive manufacturing
- 5.3 Health monitoring, damage detection
- 5.4 Metamaterials
- 5.5 Multiscale and multiphysics problems
- 5.6 Noise/vibration suppression and control
- 5.7 Smart structures and energy harvesting

6. Industrial applications

- 6.1 Aerospace and aeronautical engineering
- 6.2 Architecture and civil engineering
- 6.3 Automotive engineering
- 6.4 Biomedical engineering
- 6.5 Electronics and electrical systems
- 6.6 Ship/ocean engineering
- 6.7 Chemical engineering
- 6.8 Renewable energy (wind, solar, etc.)

PLENARY LECTURE

Abstract:

Topology optimization design is one of the most effective methods to obtain innovative aero-engine structure configurations and achieve structural lightweight designs. The topology optimization design of typical aero-engine structures, such as nozzles, blades, and disks, is faced with challenges such as special shapes and rich structural hierarchies, as well as complex dynamic or thermal environments, making it difficult for the traditional topology optimization method to meet the design and manufacturing requirements. To address these challenges, three representative topology optimization methods are proposed. Firstly, a novel stiffener topology optimization method is developed for the optimal stiffener layout on complex surface based on Helmholtz-type anisotropic filter, achieving lightweight design while ensuring high load-bearing performance and manufacturability. Then, the efficient structure dynamics topology optimization methods considering impact load or frequency response are established, and the

Bo Wang, Professor Dalian University of Technology

innovative blade configuration with the superior advantage of high hollow ratio can be obtained. Finally, a topology optimization framework for axisymmetric structures considering thermal load is proposed, and the density distribution function is employed to overcome the closed holes that are prone to be generated by the traditional topology optimization method, guaranteeing the manufacturability of the optimized disks. The above algorithms have been integrated into the selfdeveloped software Desk. TOP, and applied to the optimization design of typical aero-engine structures such as nozzles, blades, and disks.

Biography:

Dr. Bo Wang is a professor in the School of Mechanics and Aerospace Engineering at Dalian University of Technology. Currently, he serves as the Vice President of Dalian University of Technology. He is also a recipient of the National Fund for Distinguished Young Scholars. His research interests include aerospace structural strength and lightweight design, structural and multidisciplinary optimization, as well as CAE software research and development. He has authored two books and over 230 peer-reviewed journal articles, which have received over 1000 citations. He has been included in Elsevier's list of Highly Cited Chinese Researchers. He is taking the lead in the development of Desk. CAE, a dedicated software for structural strength and lightweight design. He has been awarded the Second Prize of the State Technological Innovation Award (2020, as the first achiever), the First Prize of the Higher School Outstanding Achievements in Technological Invention (2017, as the first achiever), the 25th CAST Qiushi outstanding young talent achievement transformation award, and the XPLORER PRIZE.

PLENARY LECTURE

Topic:

Practice of design optimization in manufacturing technology

Abstract:

The manufacturing process is considered as the input-output system. Thus, the input is the combination of process parameters and the output is the product quality or the productivity. The process parameters for the desirable output are conventionally determined through the experiments based on the trial-and-error method, but the experiment is expensive and time-consuming task. Computer aided engineering coupled with design optimization is one of the alternatives. The numerical simulation in manufacturing technology is computationally so expensive that it is preferable to adopt the metamodel-based optimization for the process parameters optimization. Sequential approximate optimization (SAO) that the metamodel is updated by adding new sampling points is recognized as one of the effective approaches to determine the optimal process parameters. In this paper, several industrial applications using the SAO in manufacturing technology are presented. In sheet metal forming, variable blank holder force

Satoshi Kitayama, Professor Kanazawa University

(BHF) trajectory that the BHF varies through the stroke is optimized. In PIM, the performance of conformal cooling channel including the process parameters optimization is numerically and experimentally investigated. In forging, the optimal process parameters minimizing the risk of crack are determined. In all applications, based on the numerical result, the experiment is conducted to examine the validity of design optimization. It is clarified from the numerical and experimental results that design optimization can resolve several issues in manufacturing technology.

Biography:

Satoshi Kitayama graduated from Waseda University in 1997 (B) and 1999 (M), and received Ph.D. in 2002 (Waseda University). After that, he joined at Kanazawa University in 2002 as an assistant professor and was a professor in 2015. He developed sequential approximate optimization using radial basis function network for engineering design and applied this methodology to practical engineering problems in automotives or heavy industries. He awarded "Young Engineer's Award" at CJK-OSM3 in 2004, "JSME Young Engineers Award" in 2006, "JSME Medal for Outstanding Paper" in 2011. He served the chair of Design & Systems division in JSME in 2023. He is now an executive council member of ACSMO.

PLENARY LECTURE

Topic:

Substructuring of vibro-acoustic systems: a novel approach in design, updating, and identification problems

Abstract:

Complex machines consist of many subsystems, which are generally categorized as source, transfer system, and target response from the viewpoint of vibro-acoustic system analysis. Therefore, whether designing a vibro-acoustic system, updating a numerical model, or solving an inverse problem, a unified approach that considers substructuring can enhance the effectiveness and efficiency of the design, updating, and identification processes. This lecture introduces a novel approach to the design, updating, and identification of vibroacoustic systems through basic formulation and numerous applied examples across various industrial domains.

The frequency response function (FRF)-based substructuring (FBS) method is widely used to synthesize the responses of a whole structure from the FRFs of its substructures. Recently, the Lagrange multiplier FBS (LM-FBS) formulation has

15

Dooho Lee, Professor Dongeui University

been also introduced in the dual domain and is gaining popularity across various fields. First, the design sensitivity analysis formulation under the FBS framework is introduced and validated using numerical examples.

In vibro-acoustic systems, a typical design problem is to determine the dynamic characteristics of joints between substructures to meet the vibroacoustic performance requirements of target responses. Illustrative issues to demonstrate the effectiveness of the unified approach introduced here include the heterogeneities of computational models and subsystem companies. To address these heterogeneities, the hybrid FBS model using experimental and numerical FRFs, as well as the black-box FBS model, are introduced and demonstrated through industrial examples.

During the numerical model validation process, the numerical model repeatedly updates the selected model parameters by evaluating the differences between the target responses and reference responses. Combined with a suitable measure for comparison, the unified approach can enhance the efficiency and effectiveness of the model updating process by reducing discrepancies due to subjectivity as well as iteration costs. This is demonstrated through real-world examples, including the identification problems of structural parameters.

Biography:

Dooho Lee received his BS degree from Seoul National University (Korea) in 1988, his MS from KAIST (Korea) in 1990, and his Ph.D. from KAIST (Korea) in 1994. He worked for Samsung Motors, Inc. (1995-1999) and is currently a professor at Dongeui University. The lecturer's research includes optimization of structuralacoustic systems, evaluation of uncertainty propagation in dynamic systems, and the sound transfer characteristics of human hearing

KEYNOTE LECTURES

KEYNOTE LECTURE

Xiaogang Wang, Professor Hunan University

Topic:

Strength and life assessment of mechanical structures: from physicsof-failure to reliability design

Abstract:

Mechanical structures may face a variety of failure modes during actual service. Inadequate understanding of the physical mechanism of failure and insufficient consideration of the uncertainty of the factors involved are serious constraints that affect the credibility of the assessment. This lecture is expected to provide a new technical route for strength and life assessment of mechanical structures from the perspective of physics-of-failure. To better clarify the main ideas of our research, the failure mode will mainly focus on fatigue failure, which accounts for about 90% of all mechanical service failures. Then this lecture is focused on typical fatigue crack initiation and propagation problems occurring in engineering materials and structures under service conditions. Based on advanced multi-scale experimental and numerical methods established, in-depth and systematic research has been carried out in the aspects of fatigue damage characterization, physical mechanisms of failure, life prediction models, and reliability assessment of fatigue predictions. Some innovative methods, such as in-situ fatigue experiments, dissipated energy assessment, and interval uncertainty analysis and optimization, have been developed and applied in fatigue research. These studies have achieved some fruitful results, which are expected to help better understand the fatigue phenomena of mechanical structures from the perspective of physics-of-failure and improve the accuracy and reliability of existing life prediction models.

Biography:

Prof. Wang obtained his Ph.D. in Solid Mechanics from the University of Lille 1 in France in 2014 and then joined Hunan University. He was promoted to Associate Professor in 2017 and Full Professor in 2022. His research focuses on structural integrity evaluation and reliability design. The main research interests include damage mechanisms of advanced alloys, mechanical strength and life evaluation of aero-engine components, multi-scale modelling, uncertainty analysis and structural optimization design. He has published more than 50 scientific papers in peer-reviewed journals, including Proceedings of the National Academy of Sciences of the United States of America (PNAS), Acta Materialia, International Journal of Fatigue, etc. As the principal investigator, Prof. Wang has led a number of important scientific research projects, such as the National Natural Science Foundation Project for Excellent Young Scholars, the National Major Science and Technology Project. He won the first prize of Technology Invention Award of Hunan Province in 2022. He serves as an Associate Editor of the Journal of Mechanical Engineering Science. He also serves on the Committee of Fatigue Research Branch of Chinese Materials Research Society and the Youth Committee of the Materials Branch of Chinese Mechanical Engineering Society.

KEYNOTE LECTURE

Professor Kentaro Yaji Osaka University

Topic:

Toward data-driven morphogenesis gradient-free topology optimization for complex problems

Abstract:

Topology optimization aims to create innovative engineering designs with extensive design flexibility. However, it faces challenges due to strong multimodality, especially in nonlinear physical problems like turbulence or minimax optimization. Our research aims to establish a framework that states, "No matter how complex the problem, a promising optimized solution can be found if forward problems are solvable." The root cause of the difficulties faced by topology optimization lies significantly in its reliance on gradient-based methods. To tackle this issue, we employ deep generative models to address this challenge, using evolutionary algorithms in a low-dimensional latent space. The key idea is to construct a latent space corresponding to a low-dimensional manifold using encoder-decoder neural networks of a deep generative model based on input data composed of high-dimensional material distribution. The condensed space is updated based on evolutionary algorithm operations such as crossover, selection, and mutation. It is important to emphasize that each individual only needs to solve forward problems, eliminating the need for sensitivity analysis and significantly reducing the risk of getting trapped in poor local solutions. Our approach, showcased with numerical examples, not only enhances topology optimization but also opens avenues for broader data-driven morphogenesis methods beyond this field.

Biography:

Dr. Yaji is an Associate Professor in the Department of Mechanical Engineering at Osaka University, specializing in topology optimization and its applications to thermal-fluid devices and battery systems, as well as data-driven design using deep learning. He graduated from Kyoto University with a master's degree in engineering in 2013 and received his Ph.D. in Engineering in 2016. Prior to joining Osaka University, he served as a Research Fellow for Young Scientists at the Japan Society for the Promotion of Science. He was also a visiting researcher at the Oden Institute for Computational Engineering and Sciences at the University of Texas at Austin from 2021 to 2022. Dr. Yaji has received numerous awards throughout his career, including the ASSMO Young Scientist Award and the JSME Design Engineering and Systems Division Award. As editor of journal papers, he worked as one of the guest editors of Structural and Multidisciplinary Optimization for a special issue on shape and topology optimization of flow-based multiphysics problems from 2021 to 2022. Additionally, he has been working as an editor of the Journal of Advanced Mechanical Design, Systems, and Manufacturing since 2023.

KEYNOTE LECTURE

Professor Sangho Kim Konkuk University

Topic:

Digital twin technology to increase social acceptance of urban air mobility

Abstract:

Modern society is suffering from air pollution and severe traffic congestion due to the numerous cars on the streets. Since Urban Air Mobility (UAM) is rapidly emerging as a new alternative to fundamentally address urban transportation and environmental issues by leveraging advancements and integration of technologies in the 4th Industrial Revolution era, a large-scale UAM industrial market is expected. UAM refers to aerial transportation within cities. Accordingly, efforts are being intensified worldwide to develop policies, build infrastructure, and secure core technologies for UAM aircraft development. Due to the technological characteristics of UAM, its implementation requires the development of key technologies such as eco-friendly high-efficiency propulsion systems, autonomous flight, and 3D communication networks. However, it is estimated that continuous efforts of 10 years or more will be needed for these technologies to reach a mature stage. UAM operation digital twin technology is introduced to increase social acceptance of UAM, among the key technologies that need to be developed. Digital twin is a dynamic digital replica of a physical object and environment. The physical-digital interconnection of data and information will continually update changes in the digital asset and therefore can forecast the future of the corresponding physical assets. Essentially, the UAM operation digital twin consists of four main features: High-precision Vehicle Flight Simulation, Operation Control & Management, High-level Autonomy and Dynamic Digital Urban Environment. Exploring ways to integrate UAM operation digital twin with optimization technology is to be discussed.

Biography:

Sangho Kim is a Professor in the Department of Smart Vehicle Engineering at Konkuk University, and serves as the department chair. He graduated from Kyunghee University with a Bachelor degree, and received his master degree and Ph.D. at Stanford University (October 1993 - December 2001). Sangho Kim served as the senior researcher of Korean Agency for Defense Development from 2004 – 2008, the president of Korean Society for Design Optimization in 2023, and the vice president of Korean Academy of Space Security in 2023. At present, he is serving as the vice president of the Korea Society of Global Air and Space Industry, the director of the Innovative Defense Acquisition Society, the chair of Aerospace National Standards Committee, the expert committee of ISO/TC20 (Aerospace)/ SC16 (Unmanned Vehicle), and the chair of Drone System, ICT Convergence Technical Committee. His research fields are Computational Fluid Dynamics and Aerodynamic Shape Optimization.

ш VENU N N N N ш CONFER

PROGRAM AT A GLANCE

		Sunday	, May 19							
Registration (T	egistration (The lobby on the first floor of Block 9) : 14:00-17:30									
inner at the Wealthy Palace on the first floor of Building 10: 18:00-20:00										
Monday, May 20										
egistration (The lobby on the first floor of Block 9) : 8:30-17:30										
5		Opening Cerer	mony: 8:30-9:00	0						
		Plenary lectur	e 1: 9:00-9:40							
Welcon	ne Hall:	Tea break: 9:40-10:00								
		Plenary lectur	e 2: 10:00-10:40)						
		Plenary lectur	e 3: 10:40-11:20)						
unch at the W	Vealthy Palace:	11:30-13:00								
itarting at 14:0	00									
		Room N	lumber							
	В	С	D	E	F					
A1	1B1	1C1	1D1	1E1	1F1					
ea break: 15:4	ea break: 15:40-16:00									
A2	2 1B2 1C2 1D2 1E2 1F2									
/elcome reception at the Wealthy Palace: 18:00-20:00										
SSMO EC and	SSMO EC and GC meeting: 19:30-20:30									

WERSITY O	2
	2
A H -	2

Tuesday, May 21									
Room Numbe	er								
А	В	С	D	E	F				
Starting at 8:3	0								
2A1	2B1	2C1	2D1	2E1	2F1				
Tea break: 9:5	0-10:10								
2A2	2B2	2C2	2D2	2E2	2F2				
Lunch at the V	Wealthy Palace	on the first floo	or of Building 1	0: 11:30-13:00					
Starting at 14:	Starting at 14:00								
2A3	2B3	2C3	2D3	2E3	2F3				
Cultural visit:	15:30-21:00								
Note: Rooms ,	A-C correspond	l to Meeting roo	oms 1-3 at Wel	come Hall, and	Rooms D-F				
correspond to	Meeting room	s 5-7 at Welcor	ne Hall.						
		Wednesd	ay, May 22						
Room Numbe	er								
A	В	С	D	E	F				
Starting at 8:3	0		•						
3A1	3B1	3C1	3D1	3E1	3F1				
Tea break: 9:5	0-10:10								
3A2	3B2	3C2	3D2	3E2	3F2				
Lunch at the V	Wealthy Palace	on the first floo	or of Building 1	0: 11:30-13:00					
Starting at 14:	00								
3A3	3B3	3C3	3D3	3E3	3F3				
Tea break: 15:40-16:00									
3A4	3B4	3C4	3D4	3E4	3F4				
Award ceremony and Banquet at the Wealthy Palace on the first floor of Building 10: 18:00-20:00									
Note: Rooms A-C correspond to Meeting rooms 1-3 at Welcome Hall, and Rooms D-F correspond to Meeting rooms 5-7 at Welcome Hall.									

SOCIAL **PROGRAM**

• Welcome reception: Monday, May 20, 18:00-20-00

• ASSMO EC and GC meeting:

Monday, May 20, 19:30-20:30

• Cultural visit:

Tuesday, May 21, 15:30-21:00

• Award ceremony and Banquet: Wednesday, May 22, 18:00-20:00

ESSION SCHEDULE S

May 20

	Ľ							1F1 (Industrial applications)		1F2 (Industrial applications)	
	ш						0	1E1 (Optimization in Engineering Applications)		1E2 (Optimization in Engineering Applications)	lding 10
Number	۵	ny (Welcome Hall)	1 (Welcome Hall)	break	2 (Welcome Hall)	3 (Welcome Hall)	on the first floor of Building 1	1D1 (Approximations, Surrogates, and Metamodeling; Keynote leture: 14: 00-14:30)	break	1D2 (Approximations, Surrogates, and Metamodeling)	² alace on the first floor of Bui
Room	U	Opening Ceremo	Plenary lecture	Tea	Plenary lecture	Plenary lecture	unch at the Wealthy Palace	1C1 (Design under Uncertainty)	Tea	1C2 (Design under Uncertainty)	e reception at the Wealthy F
	В							1B1 (Shape and Topology Optimization)		1B2 (Shape and Topology Optimization)	Welcom
	۷							1A1 (Optimization Methods)		1A2 (Optimization Methods)	
Time		8:30-9:00	9:00-9:40	9:40-10:00	10:00-10:40	10:40-11:20	11:30-13:00	14:00-15:40	15:40-16:00	16:00-17:40	18:00-20:00

			E .	1 (Industrial applications)		2 (Industrial applications)		3 (Industrial applications)			Ľ	1 (Industrial applications)		2 (Industrial applications)		3 (Industrial applications)		4 (Industrial applications)	
			E	2E1 (Optimization in Engineering Applications)		2E2 (Optimization in 2F Engineering Applications)		2E3 (Optimization in 2F Engineering Applications)			Ш	3E1 (Optimization in BF		3E2 (Optimization in BF		3E3 (Optimization in BF		3E4 (Optimization in 3F Engineering Applications)	f Building 10
	-	Number	D	2D1 (Approximations, Surrogates, and Metamodeling)	oreak	2D2 (Approximations, Surrogates, and Metamodeling)	on the first floor of Building 10	2D3 (Approximations, Surrogates, and Metamodeling)	22	Number	۵	3D1 (Approximations, Surrogates, and Metamodeling; Keynote leture: 8: 30-9:00)	oreak	3D2 (Approximations, Surrogates, and Metamodeling)	on the first floor of Building 10	3D3 (Approximations, Surrogates, and Metamodeling)	oreak	3D4 (Approximations, Surrogates, and Metamodeling)	Ithy Palace on the first floor of
-	Tuesday, May 2	Room	U	2C1 (Design under Uncertainty)	Teat	2C2 (Design under Uncertainty)	unch at the Wealthy Palace c	2C3 (Design under Uncertainty)	Wednesday, May	Room	U	3C1 (Shape and Topology Optimization)	Teat	3C2 (Shape and Topology Optimization)	unch at the Wealthy Palace c	3C3 (Shape and Topology Optimization)	Teat	3C4 (Shape and Topology Optimization)	ony and Banquet at the Wea
			В	2B1 (Shape and Topology Optimization; Keynote leture: 8: 30-9:00)		2B2 (Shape and Topology Optimization)		2B3 (Shape and Topology Optimization)			В	3B1 (Shape and Topology Optimization)		3B2 (Shape and Topology Optimization)		3B3 (Shape and Topology Optimization)		3B4 (Shape and Topology Optimization)	Award ceremo
			А	2A1 (Optimization Methods)		2A2 (Optimization Methods)		2A3 (Optimization Methods)			A	3A1 (Optimization Methods)		3A2 (Optimization Methods)		3A3 (Optimization Methods)		3A4 (Optimization Methods)	
		Time	2	8:30-9:50	9:50-10:10	10:10-11:30	11:30-13:00	14:00-15:20		, Time		8:30-9:50	9:50-10:10	10:10-11:30	11:30-13:00	14:00-15:40	15:40-16:00	16:00-17:20	18:00-20:00

The Asian Congress of Structural and Multidisciplinary Optimization 2024 (ACSMO 2024)

TECHNICAL PROGRAM

Plei	nary Le	ctures at Welcome Hall: May 20 8:30-9:40 10:00-11:2	20					
		Chair:Gang Li						
8:30-9:00		Opening Ceremony						
		Chair:Yoshihiro Kanno						
9:00-9:40	PL1	Topology optimization in aero-engine structure design	Bo Wang					
9:40-10:00		tea break						
		Chair: Jae Woo Lee						
10.00 10.40	DID	Practice of design optimization in manufacturing	Satoshi					
10.00-10.40		technology	Kitayama					
		Chair:Gang Li						
		Substructuring of vibro-acoustic systems: a novel						
10:40-11:20	PL3	approach in design, updating, and identification	Dooho Lee					
		problems						

Monday, May 20 14:00-15:40

1A1		Optimization Methods				
Meeting room 1		Chairs:Yunkang Sui (Member of				
14:00- 14:20	1A1-1	Building a theorical system of t reciprocal programming and a the rationalization for the mod structural topology optimizatio				
14:20- 14:40	1A1-2	Approximations of unbounded discontinuous generalized eige functions in topology optimiza				
14:40- 15:00	1A1-3	Sensitivity analysis of transmitt forces in complex systems base LM-FBS formulation				
15:00- 15:20	1A1-4	ICM method with a mapping ba node-uncoupled topology varia				
15:20- 15:40	1A1-5	Fatigue topology optimization of anisotropic material based c independent continuous mapp (ICM) method				
1B1	S	hape and Topology Optimiza				
Meeting room 2	Cha	airs:Haibo Chen (University of So (Hany				
14:00- 14:20	1B1-1	Multiobjective design with gray modification algorithm for com gripper considering shape of gr objects and performance verifi				
14:20- 14:40	1B1-2	Data-driven design of auxetic metamaterials for prescribed n mechanical behaviors with feat geometric parameters				
14:40- 15:00	1B1-3	A multi-material topology optin approach to hybrid material str with gradient lattices				

15:00- 15:20	1B1-4	Performance analysis and optimisation of spatially-varying infill microstructure within CAD geometries using using asymptotic analysis and machine learning	*Chuang Ma, Yichao Zhu (China)	[B10257]
15:20- 15:40	1B1-5	Topology optimization of structures composed of multiple materials with different tensile and compressive properties	*Jinhu Cai, Jianhua Rong, Lei Zhao, Mingjun Zhang, Zhijun Zhao (China)	[B30263]
1C1		Design under Uncertainty		ID
Meeting room 3	Cha	irs:Yoshihiro Kanno (The University of To Technolog	okyo), Zeng Meng(Hefei Unive yy)	rsity of
14:00- 14:20	1C1-1	Confidence-based non-parametric reliability optimization of trusses based on data-driven approach to computational elasticity	*Yoshihiro Kanno (Japan)	[C20300]
14:20- 14:40	1C1-2	Reliability-based topology optimization using variable density method and performance measure approach	*Ping Yi, Ying Liu, Na Li, Sulaiman Shah (China)	[C20248]
14:40- 15:00	1C1-3	Lightweight design for dynamic response problem by using reliability- based topology optimization method	*Gang Yang, Zeng Meng (China)	[C20381]
15:00- 15:20	1C1-4	Robust reliability-based design optimization for lead rubber bearings of girder bridge based on direct probability integral method	*Hui Li, Guohai Chen, Dixiong Yang (China)	[C20252]
15:20- 15:40	1C1-5	Non-intrusive polynomial chaos expansion for robust topology optimization of truss-like continua under random loads	*Xinze Guo, Kemin Zhou (China)	[C30255]
1D1	Ą	Approximations, Surrogates, and Metamodeling		ID
Meeting room 5	Chai	rs:Sangho Kim (Konkuk University), Man University	yu Xiao (Northwestern Polyte /)	chnical
14:00- 14:30	1D1-1	Digital twin technology to increase social acceptance of urban air mobility	*Sangho Kim (Korea)	Keynote

1F1		Industrial applications		ID
	(
15:20- 15:40	1E1-5	Rapid prediction of structural thermal sources and temperature field based on physics and data co-driven approach under limited measuring points	*Hongze Du, Yufeng Bu, Qi Xu, Wenbo Li, Chenguang Zhang, Jun Yan (China)	[E3042
15:00- 15:20	1E1-4	Crack identification of composite beam structure based on mechanism and data fusion	Liangliang Yang, *Zhuangzhuang Gong, Xiwang He, Peng Li, Xueguan Song (China)	[E3050
14:40- 15:00	1E1-3	Optimizing jacket platform safety: a hybrid deep learning solution for damage evaluation	*Su Xin, Qi Zhang, Yi Huang (China)	[E3025
14:20- 14:40	1E1-2	Optimization of anisotropy lattice structure arrangement in water cooling plates	*Kazutaka Yanagihara, Shomu Murakoshi, Akihiro Takezawa (Japan)	[E2028
14:00- 14:20	1E1-1	Integrated optimization of piezo- embedded compliant structures considering fundamental frequency constraints	Mingze Wang, Jingyu Hu, Yunfeng Luo, *Shutian Liu (China)	[E5043
Meeting room 6	Chairs	Hayoung Chung (Ulsan National Institut: Liu(Dalian University c	e of Science and Technology of Technology)), Shutia
1E1	Opti	mization in Engineering Applications		ID
15:25- 15:40	1D1-5	lteration-free design of stiffened thin- walled structures guided by data-rich buckling modes	*Liang Meng (China)	[B4029
15:10- 15:25	1D1-4	Film pressure prediction and optimization for hydrodynamic textured surfaces using lightweight batch normalization-free fully convolutional residual network	*Bao Zhu, Jie Lin, Weisheng Zhang (China)	[D2026
14:50- 15:10	1D1-3	Aerodynamic modeling optimization of bus under crosswind condition based on improved gaussian process	*Mingkuan Yao, Xu Shao	[D1028
14:30- 14:50	1D1-2	Prediction of load-displacement curve of outer panel using GNN and GRU	*Youngjin Ju, Minsik Seo, Yongho Bang, Byeong Eun Moon, Seungjae Min (Korea)	[F3055

Meeting room 7	Chai	rs:Yongtao Lyu(Dalian University of Tech University	nology), Takanori Chihara(Ka /)	nazawa
14:00- 14:20	1F1-1	Optimization of rear-view monitor installation height for reverse drive support of wheel loader	*Takanori Chihara, Hiroto Morita, Kento Ohmae, Toshihiko Komatsuzaki, Shigeaki Usui, Hirofumi Wada, Satoru Tokiwa, Shuichi Ohsawa (Japan)	[F30341]
14:20- 14:40	1F1-2	Design, optimization, and evaluation of novel TPMS-based bone scaffold with multi-functional pores for bone implant	*Yongtao Lyu, Yi Huo , Hangxing Zhu (China)	[F40259]
14:40- 15:00	1F1-3	Topology optimization design for degradable implants with coatings	Hao Sun, *Min Xiong, Heng Zhang, Xiaohong Ding (China)	[F40424]
15:00- 15:20	1F1-4	Integrating ADNM and MLP for on- device digital twin modeling in HVAC systems	*Nuri Kim, Yoojeong Noh, Young-Jin Kang, Noma Park, Soonyong Choi, Yoonjei Hwang (Korea)	[F50504]
15:20- 15:40	1F1-5	Back propagation neural network based prediction for shapes of a petal hole induced by hydrodynamic ram	*Wenwen Wang, Wentao Xu, Ya Zhang, Kerong Ren (China)	[F10524]

Monday,May 20 16:00-17:40

1A2		Optimization Methods		ID				
Meeting room 1	Chairs:Changting Zhong (Hainan University), Masao Arakawa (Waseda Uni							
16:00- 16:20	1A2-1	Starfish optimization algorithm (SFOA): a nature-inspired metaheuristic method by comparing 100 algorithms	*Changting Zhong, Gang Li, Zeng Meng, Haijiang Li, Ali Riza Yildiz, Seyedali Mirjalili (China)	[A50295]				
16:20- 16:40	1A2-2	Grouping and explosions of PSO for large scale problems	*Masao Arakawa (Japan)	[A50510]				
16:40- 17:00	1A2-3	Continuous filter method of topological control based on persistence homology	*Qianglong Wang, Chong Wang, Haitao Han, Tongxing Zuo, Zhenyu Liu (China)	[A10297]				

17:00- 17:20	1A2-4	Multi-resolution topology optin method for composite structure in-plane periodicity
17:20- 17:40	1A2-5	Nonlinear topology optimizatio prescribed deformed geometry inverse motion analysis
1B2	S	hape and Topology Optimizati
Meeting room 2	Cha	airs:Haibo Chen (University of Sc (Hany
16:00- 16:20	1B2-1	A multi-scale bi-material topolc optimization approach for exter vibro-acoustic interaction syste
16:20- 16:40	1B2-2	Ode-driven boundary penalizat method combined with isogeor analysis for structural topology shape optimization
16:40- 17:00	1B2-3	Topology optimization for gas-µ flow: a finite difference approac eulerian-eulerian modeling
17:00- 17:20	1B2-4	A geometric post-processing me for metamaterial design results
17:20- 17:40	1B2-5	Deep generative design for manufacturing: meeting the des constraints of casting and inject molding
1C2		Design under Uncertainty
Meeting room 3	Chairs	Zeng Meng (Hefei University of ⁻ Tokyo), Dongjin
16:00- 16:20	1C2-1	Robust design optimization for combustion in a biomass powe
16:20- 16:40	1C2-2	An improved maximum entropy method with polynomial fitting
16:40- 17:00	1C2-3	Reliability-based design optimiz of inter-story viscous dampers u sensitivity analysis and kriging

17:00- 17:20	1C2-4	Probabilistic volume element model of 2D woven C/SiC composites considering copula dependence between strength and modulus	*Qiang Li, Gang Li ,Qiang li(China)	[C10276]					
1D2	Д	Approximations, Surrogates, and Metamodeling		ID					
Meeting room 5	Chairs	Manyu Xiao (Northwestern Polytechnica: Institute of Science and	l University), Ikjin Lee(Korea / d Technology)	Advanced					
16:00- 16:20	1D2-1	Enhancing scalability in large-scale structural dynamics optimization through integrated reduced models	*Manyu Xiao, Jun Ma, Piotr Breitkopf , Weihong Zhang (China)	[D40320]					
16:20- 16:40	1D2-2	Multi-objective optimization for minimizing warpage and cycle time in plastic injection molding using pressure vibration	*Kenta Yamaya, Satoshi Kitayama, Yusuke Yamazaki, Yoshikazu Kubo, Yasuhiro Kitamura, Shuji Aiba (Japan)	[D20265]					
16:40- 17:00	1D2-3	Study on action-PINN to predict the behavior of the system having phase transition	*Semin Lee, Hayoung Chung (Korea)	[D30558]					
17:00- 17:20	1D2-4 Integrated optimization of variable- stiffness composite laminates under manufacturing constraints using multi- fidelity surrogate models		*ZhangYao Zheng, Haichao An, Teng Long (China)	[D20354]					
17:20- 17:40	1D2-5 Mixed-variable IPM motor design model		*Tatsuya Asanuma, Yoshihiro Kanno (Japan)	[D20317]					
1E2	Optir	mization in Engineering Applications		ID					
Meeting room 6	Chairs	:HayoungChung (Ulsan National Institut Liu(Dalian University of Technology),I	e of Science and Technology) Liang Xue (Yanshan University	, Shutian /)					
16:00- 16:20	1E2-1	NSH structure optimization using multi- fidelity modeling under manufacturing uncertainty	*Taemin Noh, Hyungdo Kim, Young-Jin Kang (Korea)	[E20498]					
16:20- 16:40	1E2-2	Designing mode shapes and chladni patterns with the eigenvectors-guided topology optimization method	*Liang Xue, Guilin Wen, Fengwen Wang, Niels L. Pedersen (China)	[E10307]					

16:40- 17:00	1E2-3	Experimental and numerical investigation on the optimizing turbulent heat transfer with sta v-shaped pin fins minichannels sink
17:00- 17:20	1E2-4	Optimization and manufacturin of lightweight metal additive manufacturing mirror
17:20- 17:40	1E2-5	Multi-material topology optimi via stochastic discrete steepest multi-valued integer programm
1F2		Industrial applications
Meeting	Chai	rs:Yongtao Lyu(Dalian Universit
room 7		
room 7 16:00- 16:20	1F2-1	Linearly approximated differen layout optimization of heat-ger components on one satellite ca plate
room 7 16:00- 16:20 16:20- 16:40	1F2-1 1F2-2	Linearly approximated differen layout optimization of heat-ger components on one satellite ca plate Thermal design and optimizati metal-hydride hydrogen storag
room 7 16:00- 16:20 16:20- 16:40- 16:40- 17:00	1F2-1 1F2-2 1F2-3	Linearly approximated differen layout optimization of heat-ger components on one satellite ca plate Thermal design and optimizati metal-hydride hydrogen storag Three-field floating projection optimization of structures subj design-dependent inertial load
room 7 16:00- 16:20 16:20- 16:40- 17:00- 17:20	1F2-1 1F2-2 1F2-3 1F2-4	Linearly approximated differen layout optimization of heat-ger components on one satellite ca plate Thermal design and optimizati metal-hydride hydrogen storag Three-field floating projection optimization of structures subj design-dependent inertial load Stress field prediction: UNet me integrated with focal net transf

39

Tuesday, May 21 8:30-9:50 **Optimization Methods** ID 2A1 Meeting Chairs: Gang-Won Jang (Sejong University), Hai Huang (Beihang University) room 1 Spring-connected rigid link model *Gang-Won Jang, Quang 8:30-2A1-1 for topology optimization of linkage [B40321] Dat Tran (Koera) 8:50 mechanisms *Naruethep Sukulthanasorn, Junsen 2A1-2 Topology optimization using quantum annealing-based optimizer 8:50 Xiao, Koya Wagatsuma, [A50366] 9:10 Shuji Moriguchi, Kenjiro Terada (Japan) *Junfeng Gao, Kangjie Liu, Topology optimization method of 9:10-2A1-3 coated structure with non-uniform Yongcun Zhang, Shutian Liu [A10416] 9:30 thickness coating (China) *Chong Wang, Tongxing Structural topology optimization Zuo, Qianglong Wang, 9:30 2A1-4 design method based on topology [A10452] Haitao Han, Zhiqi Wang, 9:50 recognition and control Zhenyu Liu (China) 2B1 Shape and Topology Optimization ID Meeting Chairs: Jun Yan (Dalian University of Technology), Kentaro Yaji (Osaka University) room 2 Toward data-driven morphogenesis— 8:30-2B1-1 gradient-free topology optimization for *Kentaro Yaji (Japan) Keynote 8:90 complex problems Isotropic hybrid metamaterials inspired *Yuping Han, Yaguang 9:00 2B1-2 B30375 by topology optimization Wang, Zhan Kang (China) 9:20 A creative design approach for multiple 2B1-3 output link mechanisms through 9:20-Yurika Sayo, Takayuki B40281 9:35 topology optimization of a micropolar Yamada (Japan) elasticity model Topology optimization of continuous fiber-reinforced polymers (CFRPs) 9:35 *Yongjia Dong, Hongling Ye B10349 2B1-4 9:50 structures considering the residual (China) stress in additive manufacturing

2C1		Design under Uncertainty		ID		
Meeting room 3	Chairs:Dixiong Yang (Dalian University of T University)		Technology) , Weifei Hu (Zhej /)	iang		
8:30- 8:50	2C1-1	Unified framework for uncertainty quantification and design optimization of static and dynamic structures	*Dixiong Yang, Guohai Chen (China)	[C20253]		
8:50- 9:10	2C1-2	Multi-target-reliability-based design optimization: a new RBDO method considering multiple target reliabilities simultaneously	Jiquan Yan, *Weifei Hu, Sichuang Cheng, Feng Zhao, Jianrong Tan (China)	[C20495]		
9:10- 9:30	2C1-3	An adaptive sampling strategy for interval bounds analysis of structures and cable-net antennas	*Naigang Hu, Baoyan Duan (China)	[C10329]		
9:30- 9:50	2C1-4	F-sensitivity analysis of type IV hydrogen cylinder based on PC-GK-SBL model	*Yiyuan Wang, Gang Li , Wanxin He, Qiang Li, Ye Liu (China)	[A20427]		
		They amaked age party in the second sec				
2D1	A	Approximations, Surrogates, and Metamodeling		ID		
Meeting room 5	Chairs	s:Masakazu Kobayashi (Toyota Technolo National Unive	gical Institute),Kyunghoon Le ersity)	e (Pusan		
8:30- 8:50	2D1-1	Component-based aircraft wing reconfiguration and structural response prediction on the fly	Bongseok Kim, Shinseong Kang, *Kyunghoon Lee (Koera)	[D40377]		
8:50- 9:10	2D1-2	Optimization of chair comfort settings using design of experiment and response surface method	*Masakazu Kobayashi, Kenya Muraishi (Japan)	[D20455]		
9:10- 9:30	2D1-3	A data-driven bi-directional homogenization method for the design of multi-scale metamaterials	*Senlin Huo, Bingxiao Du, Yong Zhao, Xiaoqian Chen (China)	[B20411]		
9:30- 9:50	2D1-4	Unified bayesian framework of dynamic model order reduction and master DOFs selection	*Ting Liu, Ke Wang, Ce Huang (China)	[D40541]		
2E1	Opti	mization in Engineering Applications		ID		
Meeting room 6	Ch	Chairs:Xiang Li (China Three Gorges University), Satoshi Kitayama (Kanazawa University)				

8:30- 8:50	2E1-1	Window size and sampling rate selection for cost-optimal deep learning-based fault diagnosis	*Hyeongmin Kim, Byeng D. Youn (Koera)	[E30562]		
8:50- 9:10	2E1-2	Cellular structure for reducing dynamic instability by using topology optimization	*Sol Ji Han, Gil Ho Yoon, Akihiro Takezawa (Koera)	[E60335]		
9:10- 9:30	9:10- 9:30 2E1-3 Crashworthiness analysis of a novel bionic honeycomb structure based on variable cross-section design		*Xiang Li, Ningchuang Li, Yuechao Zhao, Qishuang Hu, Linjun Wang, Junjian Fu (China)	[E40413]		
9:30- 9:50	9:30- 9:50 2E1-4 Dynamics analysis of an asymmetric bistable piezoelectric energy harvester with unilateral piecewise nonlinearity		*Jianhui Wang, Wei Wang (China)	[E70511]		
2F1		Industrial applications		ID		
	Chairs: Ming Li (Dalian University of Technology) , Sangho Kim (Konkuk University)					
Meeting room 7	Chai	rs:Ming Li (Dalian University of Technolo	gy), Sangho Kim (Konkuk Un	iversity)		
Meeting room 7 8:30- 8:50	Chai 2F1-1	rs:Ming Li (Dalian University of Technolo Density-based multi-material topology optimization with length scale control and applications in aerospace structures	gy) , Sangho Kim (Konkuk Un *Tong Gao, Longlong Song , Yang Li, Yongbin Huang , Weihong Zhang (China)	iversity) [F10380]		
Meeting room 7 8:30- 8:50 8:50- 9:10	Chai 2F1-1 2F1-2	rs:Ming Li (Dalian University of Technolo Density-based multi-material topology optimization with length scale control and applications in aerospace structures Topology optimization of lattice structure unit cell geometry in crash box design	gy), Sangho Kim (Konkuk Un *Tong Gao, Longlong Song , Yang Li, Yongbin Huang, Weihong Zhang (China) *Jiung (Kevin) Choi, Lkjin Lee (Koera)	iversity) [F10380] [F30333]		
Meeting room 7 8:30- 8:50 9:10 9:10- 9:30	Chai 2F1-1 2F1-2 2F1-3	rs:Ming Li (Dalian University of Technolo Density-based multi-material topology optimization with length scale control and applications in aerospace structures Topology optimization of lattice structure unit cell geometry in crash box design Multi-phase-based local search method considering steel cost for structural optimization of building frames	gy), Sangho Kim (Konkuk Un *Tong Gao, Longlong Song , Yang Li, Yongbin Huang , Weihong Zhang (China) *Jiung (Kevin) Choi, Lkjin Lee (Koera) *Hiroyasu Miura, Toshihide Saka, Eisaku Nakamura, Nao Maekawa, Akihiro Kunisue,Kohei Ota, Makoto Yamakawa (Japan)	iversity) [F10380] [F30333] [F20358]		

Tuesday, May 21 10:10-11:30

2A2	Optimization Methods		
Meeting room 1	Ch	airs:Gang-Won Jang (Sejong L	
10:10- 10:30	2A2-1	A cross-sectional type and topo optimization method for frame	
10:30- 10:50	2A2-2	A method for limiting structura gy in structural topology optim	
10:50- 11:10	2A2-3	Optimization design and exper study of typical node of ship su structure based on fatigue stre	
11:10- 11:30	2A2-4	A numerical method for shape zation based on the hilbertian ization with boundary integral lation	
2B2	S	hape and Topology Optimizat	
Meeting	Chairs: Jun Yan (Dalian University o		
room 2	Chai	rs:Jun Yan (Dalian University o	
room 2 10:10- 10:30	2B2-1	Intelligent design of topology	
room 2 10:10- 10:30 10:30- 10:50	2B2-1 2B2-2	rs: Jun Yan (Dalian University o Intelligent design of topology o tion considering physics-relate mation Loopwise route representation topology optimization for vehic ing problems	
room 2 10:10- 10:30 10:30- 10:50 10:50- 11:10	2B2-1 2B2-2 2B2-3	Intelligent design of topology of tion considering physics-relate mation Loopwise route representation topology optimization for vehic ing problems Explicit topology optimization large deforming multi-material posite structures	
room 2 10:10- 10:30 10:30- 10:50- 11:10 11:10- 11:30	2B2-1 2B2-2 2B2-3 2B2-4	rs: Jun Yan (Dalian University o Intelligent design of topology o tion considering physics-relate mation Loopwise route representation topology optimization for vehic ing problems Explicit topology optimization large deforming multi-material posite structures Multi-objective PSO driven by I	
room 2 10:10- 10:30 10:30- 10:50- 11:10 11:10- 11:30	2B2-1 2B2-2 2B2-3 2B2-4	rs: Jun Yan (Dalian University o Intelligent design of topology o tion considering physics-relate mation Loopwise route representation topology optimization for vehic ing problems Explicit topology optimization large deforming multi-material posite structures Multi-objective PSO driven by I	
room 2 10:10- 10:30- 10:50- 10:50- 11:10- 11:10- 11:30 2C2	2B2-1 2B2-2 2B2-3 2B2-4	Intelligent design of topology of tion considering physics-relate mation Loopwise route representation topology optimization for vehic ing problems Explicit topology optimization large deforming multi-material posite structures Multi-objective PSO driven by I Design under Uncertainty	

41

10:10- 10:30	2C2-1	Bubble sampling method for system reliability analysis of complex engineer- ing structure	*Zeng Meng, Changquan Li (China)	[C20388]
10:30- 10:50	Analysis Modified constrained bayesian optimi- zation algorithms for efficient structural reliability analysis		*Jingwen Song, Pengfei Wei, Weihong Zhang (China)	[C20362]
10:50- 11:10	2C2-3 A metaheuristic data-driven probability uncertainty analysis method based on the B-spline theory and the maximum entropy method		*Wanxin He, Gang Li (China)	[C20312]
11:10- 11:30	2C2-4	Model updating based on bayesian the- ory and improved objective function	*Wanhua Yan (China)	[A10572]
2D2	A	opproximations, Surrogates, and Metamodeling		ID
Meeting room 5	Chairs	Masakazu Kobayashi (Toyota Technolog of Shanghai for Science a	gical Institute), Heng Zhang (l and Technology)	Jniversity
10:10- 10:30	2D2-1	Machine-learning assisted bionic topol- ogy optimization method for free-vi- brating continuum Structures	Sen Kong, Xiaohong Ding,*Heng Zhang,Min Xiong (China)	[B60420]
10:30- 10:50	2D2-2	Data-driven multifidelity topology design with persistent homology-based selection strategy	*Taisei Kii, Kentaro Yaji, Hi- roshi Teramoto, Kikuo Fujita (Japan)	[B60456]
10:50- 11:10	2D2-3 Large-scale and high-performance par- allel topology optimization based on problem independent machine learn- ing(PIML)		*Xinyu Ma (China)	[B50518]
11:10- 11:30	2D2-4 graph neural network for design do- main with unstructured meshes		*Hyogeun Park, Seunghun Lee, Minsik Seo, Seungjae Min (Koera)	[B60553]
2E2	Optir	mization in Engineering Applications		ID
Meeting room 6	Chairs:	Xiang Li (China Three Gorges University) ty)	, SatoshiKitayama (Kanazawa	a Universi-
10:10- 10:30	2E2-1	DL-based inverse design framework: a case study of a defective phononic crystal for narrowband filtering	*Donghyu Lee, Soo-Ho Jo, Byeng D. Youn (Koera)	[E40342]

10:30- 10:50	2E2-2	Machine-learning-based asymp homogenisation and localisatic sidering boundary layer effects
10:50- 11:10	2E2-3	Damage identification with strue elastography method consideri coupling effect of stiffness and
11:10- 11:30	2E2-4	Topological communication ne optimization for distributed coo tive vibration control of truss st
2F2		Industrial applications
Meeting room 7	Chairs	:Tong Gao (Northwestern Polyte Te
10:10- 10:30	2F2-1	Wrinkle-free membranes with c mized holes
10:30-	252.2	Stacking optimization of drop-o laminated composites under er
10:50	2F2-2	stacking constraints and progra visualization for FEM analysis ve tion
10:50 10:50- 11:10	2F2-2 2F2-3	stacking constraints and progra visualization for FEM analysis ve tion Aerodynamic/propulsion/trajec integrated optimization researc intelligent missiles

Tuesday, May 21 14:00-15:20 2A3 **Optimization Methods** ID Chairs: Yamin Li (Northwestern Polytechnical University), Hongling Ye (Beijing Meeting University of Technology) room 1 Concurrent optimization method of principal stress orientation interpolated *Hongling Ye, Yongjia Dong 14:00-2A3-1 [B30403] continuous fiber angle and structural 14:20 (China) topology Discrete adjoint system for topology Kaiwen Guan, Takayuki 14:20-2A3-2 optimiztion of rarefied gas considering [A20350] 14:40 Yamada (Japan) specular boundary reflection condition A new gradient infill structure 14:40 2A3-3 generation method for multi-axis Yamin Li (China) [E20567] 15:00 printing The crashworthiness prediction and Jiaxing He, Jie Xing, Bo optimization for shrink circular tube 15:00-Wang, Xin Zheng, Anqi Shu 2A3-4 [A40331] energy-absorbing structures based 15:20 (China) deep learning 2B3 Shape and Topology Optimization ID Chairs: Makoto Ohsaki (Kyoto University), Jun Tie (Tianjin University of Finance and Meeting room 2 Economics) Non-parametric structural shape 2B3-1 optimization of piecewise developable Makoto Ohsaki, Kentaro 14:00-Hayakawa, Jingyao Zhang [B40314] surfaces using discrete differential 14:20 (Japan) geometry Semigroup structure and properties of Jun Tie, Yunkang Sui, some kinds of mappings in structural 14:20 2B3-2 Xirong Peng, Hongling Ye [A10313] topology optimization ICM method 14:40 (China) with a novel filter scheme Topology optimization for particle control *Young Hun Choi, Gil Ho 14:40 2B3-3 [B40334] Yoon(Koera) considering particle-structure contact 15:00 *Misato Kato, Taisei Kii, 15:00-Data-driven multifidelity approach for 2B3-4 Kentaro Yaji, Kikuo Fujita [B60483] stress-based topology optimization 15:20 (Japan)

202		Design under Unsertainty		
203			·	
veeting room 3	Cha	irs:Jian Zhang (Northwestern Polytechn University	ncal University) , Weifei Hu (Zf /)	nejiang
14:00- 14:20	2C3-1	Reliability analysis of high-dimensional complex structures using combined dimension reduction and adaptive sparse polynomial chaos expansion	*Jian Zhang, Donghui Hao, Xinxin Yue, Lei Chen(China)	[C20487]
14:20- 14:40	2C3-2	Uncertainty quantification of aerodynamic characteristics of wind turbine blade airfoils considering dynamic stall using bayesian calibration	*Weifei Hu, Shengjun Wang, Tongzhou Zhang, Jianrong Tan(China)	[C10496]
14:40- 15:00	2C3-3	Reliability-based topology Optimization under stress and displacement constraints with high accuracy	*Qiaochu Qian, Zeng Meng(China)	[C20359]
15:00- 15:20	2C3-4	Multi-objective optimization design of the automotive battery packs with fiber metal laminates based on kriging model	*Yang Ni, Gang Li(China)	[F30315]
2D3	A	pproximations, Surrogates, and Metamodeling		ID
Meeting room 5	Cha	irs:Heng Zhang (University of Shanghai Yonekura (The University	for Science and Technology), sity of Tokyo)	Kazuo
14:00- 14:20	2D3-1	Ship hull form design synthesis using generative adversarial network	*Kazuo Yonekura, Xinran Qi, Katsuyuki Suzuki (Japan)	[B60453]
14:20- 14:40	2D3-2	Developing efficient prediction models with advanced feature engineering and tailored evaluation metrics for limited performance data	*Jaehyun Jung, Young-Jin Kang, Ju Chan Yuk, Suk Hee Park, Han Kim, Byungju Min, Yoojeong Noh (Koera)	[D30570]
14:40-	2D3-3	Al-assisted topology optimization of	*Chunpeng Wang, Yanping Lian(China)	[B60419]
15:00	2000	the impact-resistant structures		
15:00 15:00- 15:20	2D3-4	Accelerating topology optimization using MOR	*Kazusuke Chin, Kazuo Yonekura, Shun Ogawa, Katsuyuki Suzuki	[D20491]
15:00 15:00- 15:20	2D3-4	Accelerating topology optimization using MOR	*Kazusuke Chin, Kazuo Yonekura, Shun Ogawa, Katsuyuki Suzuki	[D20491]
15:00 15:00- 15:20 2E3	2D3-4 Optin	Accelerating topology optimization using MOR	*Kazusuke Chin, Kazuo Yonekura, Shun Ogawa, Katsuyuki Suzuki	[D20491]

14:00- 14:20	2E3-1	Optimizing the mechanical properties of a novel lattice structure	*Cem Guzelbulut, Katsuyuki Suzuki (Japan)	[E40404]	
14:20- 14:40	14:20- 14:402E3-2Topology optimization on a distribution of multiple types of miniaturized dynamic vibration absorbers for damping of multiple vibration modes of a flat plate		*Jun Iwasaki,Riku Yoneoka, Akihiro Takezawa, Yuya Saito, Takeshi Matsuoka, Takahiro Komamura,Naoyuki Uchida and Masanari Nakayama (Japan)	[E60357]	
14:40- 15:00	2E3-3	Multiscale shape optimization method for natural vibration design of porous structures	*Ayu Kamiya, Masatoshi Shimoda (Japan)	[E50378]	
15:00- 15:20	2E3-4 Physics-guided neural network for nonsmooth dynamic problems		Zilin Li , Jinshuai Bai, *Feifan Zhang, Ronghan Wei, Yuantong Gu (China)	[E10507]	
		and a second			
	Industrial applications				
2F3		Industrial applications		ID	
2F3 Meeting room 7	Cha	Industrial applications airs:Tong Gao (Northwestern Polytechnic University	cal University), Sangho Kim (K /)	ID Konkuk	
2F3 Meeting room 7 14:00- 14:20	Cha 2F3-1	Industrial applications airs:Tong Gao (Northwestern Polytechnic University Drone noise prediction model based on experimental data	cal University), Sangho Kim (K /) *Sangho Kim,Dahui Choi, Jaeuk Bae, Juhyun Lee, Youngrok Son (Koera)	ID Konkuk [F10543]	
2F3 Meeting room 7 14:00- 14:20 14:20- 14:40	Cha 2F3-1 2F3-2	Industrial applications airs: Tong Gao (Northwestern Polytechnic University Drone noise prediction model based on experimental data Smooth distribution for deep learning in optimum design of 3D building frames	cal University), Sangho Kim (K /) *Sangho Kim,Dahui Choi, Jaeuk Bae, Juhyun Lee, Youngrok Son (Koera) *Wakana Matsumoto, Makoto Yamakawa, Kohei Ota (Japan)	ID Konkuk [F10543] [F20522]	
2F3 Meeting room 7 14:00- 14:20 14:20- 14:40 14:40- 15:00	Cha 2F3-1 2F3-2 2F3-3	Industrial applications airs: Tong Gao (Northwestern Polytechnic University Drone noise prediction model based on experimental data Smooth distribution for deep learning in optimum design of 3D building frames Maximization of fundamental frequency for small satellite components layout	cal University), Sangho Kim (K /) *Sangho Kim,Dahui Choi, Jaeuk Bae, Juhyun Lee, Youngrok Son (Koera) *Wakana Matsumoto, Makoto Yamakawa, Kohei Ota (Japan) *Wei Cong, Bingxiao Du, Yong Zhao, Xiaoqian Chen (China)	ID Conkuk [F10543] [F20522] [F10437]	

Wednesday, May 22 8:30-9:50

3A1	Optimization Methods		
Meeting room 1	Ch	airs:Xiaodong Huang (Swinburn Universi	
8:30- 8:50	3A1-1	Design of topological insulators maximizing acoustic bandgap v	
8:50- 9:10	3A1-2	Topology optimization design on natural convection heat sinks un a darcy flow model incorporation pseudo-boundary layer	
9:10- 9:30	3A1-3	An efficient GPU solver for 3D la scale topology optimization of continuous fiber-reinforced cor structures	
9:30- 9:50	3A1-4	Topology optimization of Shell- infill structures considering thermomechanical buckling	
3B1	Sł	nape and Topology Optimizati	
Meeting room 2	Chairs	:Junji Kato (Nagoya University),	
8:30- 8:50	3B1-1	Multi-material topology optimi based on viscoelastic dynamic structural response	
8:50- 9:10	3B1-2	A multi-objective topology opti approach based on the modifie hypervolume increment	
9:10- 9:30	3B1-3	Deep learning-based topology optimization for shortest path problems.	
9:30- 9:50	3B1-4	Large-scale topology optimizat anisotropic acoustic metamate	
1	1		

3C1	Sł	nape and Topology Optimization2		ID
Meeting room 3	Cha	airs:Zunyi Duan (Northwestern Polytechn University of Tecl	nical University), Shutian Liu (hnology)	Dalian
8:30- 8:50	3C1-1	Topology optimization method for vibrating structures and phononic crystals with prescribed frequency forbidden bands	Qiangbo Wu ,Quhao Li, *Shutian Liu (China)	[B10429]
8:50- 9:10	3C1-2	An Interactive design method with topology optimization	Peng Wei, *Jinjia Liu (China)	[B40448]
9:10- 9:30	3C1-3	A general approach for multi-scale numerical shape function construction and its application in topology optimization	*Mingshuo Zhang, Yuan Liang, Gengdong Cheng(China)	[B10450]
9:30- 9:50	3C1-4	A fluid topology optimization method considering interface element cutting and normal velocity constraint	*Chong Wang, Yuan Liang, Zhiqi Wang, Zhenyu Liu, Gengdong Cheng (China)	[B70470]
3D1	A	Approximations, Surrogates, and Metamodeling		ID
Meeting room 5	Chairs	:Xiaogang Wang (Hunan University), Yoo	jeong Noh (Pusan National U	niversity)
8:30- 9:00	3D1-1	Strength and life assessment of mechanical structures: from physics-of- failure to reliability design	Xiaogang Wang	Keynote
9:00- 9:20	3D1-2	Discovering interpretable latent factors in multiobjective topology optimization by using an encoder-decoder model	*Ryo Tsumoto, Kentaro Yaji , Yutaka Nomaguchi, Kikuo Fujita (Japan)	[B60387]
9:20- 9:35	3D1-3	Development of surrogate optimization driven by PCA-RBFN	*Jingyi Qiao, Masao Arakawa (Japan)	[D20266]
9:35- 9:50	3D1-4	Large-scale three-dimensional non- uniform shell-graded-infill structure optimization based on problem- independent machine learning and partitioned coordinate mapping under explicit topology optimization framework	*Xianglong Cao,Wu Xu, Chang Liu (China)	[B40538]

Meeting room 6	Chair	s:Masatoshi Shimoda (Toyota Te Polytec
8:30- 8:50	3E1-1	Combined anisotropic and cycl constitutive model for laser pov bed fusion fabricated aluminur
8:50- 9:10	3E1-2	Topology optimization of perio lattice structures for specified mechanical properties using m learning considering member connectivity
9:10- 9:30	3E1-3	Topology optimization of rotor machines based on energy conservation law in fluid machi
9:30- 9:50	3E1-4	EMsFEM-based data-driven mu optimization of graded lattice structures with multiple micros configurations
3F1		Industrial applications
Meeting room 7	Cha	airs:Yohei Yokosuka(Kagoshima Ta
8:30- 8:50	3F1-1	Neural networks as surrogate n structural optimization of steel using classifiers
8:50- 9:10	3F1-2	Multi-material topology optimi of high-aspect-ratio wing consi- geometrical nonlinearity with deformation controls
		Optimisation of laser cutting pr
9:10- 9:30	3F1-3	parameters for TC4 titanium all

		, may 22 10120 12100		
3A2		Optimization Methods		ID
Meeting room 1	Cł	nairs:Xiaodong Huang (Swinburne Univer University of Tec	rsity of Technology), Pai Liu (E hnology)	Dalian
10:10- 10:30	3A2-1	A form-finding design method for tensegrity structures based on ADMM algorithm	*Jialin Dong, Xueping Li, Hongzhe Liao, Qian Sun, Chuhua Xian, Jingyao Zhang, Shaohua Pan, Peng Wei (China)	[B30423]
10:30- 10:50	3A2-2	Topology optimization of hyperelastic periodic microstructures based on inverse motion and nonlinear homogenization	*Zhihui Liu, Jun Yan, Zhirui Fan (China)	[B10286]
10:50- 11:10	3A2-3	Simultaneous optimization design of shell structural topology and supports for dynamic performance improvement	*Shun Li, Shouyu Cai, Wentao Xu, Hongtao Wei (China)	[B40539]
11:10- 11:30	3A2-4	Multi-material structural topology optimization with material interfacial stress constraints	*Pai Liu, Zhan Kang, Yifan Zhang (China)	[A10330]
3B2	Sł	nape and Topology Optimization1		ID
Meeting room 2	Chairs	::Junji Kato(Nagoya University),Zonglian	g Du (Dalian University of Teo	chnology)
10:10- 10:30	3B2-1	Generative design of diverse optimized structures with controllable complexities	*Zongliang Du, Xinyu Ma, Wenyu Hao, Xu Guo (China)	[B60516
10:30- 10:50	3B2-2	Topology optimization of transient response problems using automatic differentiation	*Shun Ogawa, Kazuo Yonekura, Katsuyuki Suzuki (Japan)	[B40386]
10:50- 11:10	3B2-3	Isogeometric topology optimization of Kirchhoff-Love shell structures using phase field model	*Ji Sheng,Xiaodong Wei (China)	[B40288]
11:10- 11:30	3B2-4	On the formulation of topology optimization for finite strain elastoplastic materials using continuous adjoint method	*Jike Han, Kozo Furuta, Tsuguo Kondoh, Shinji Nishiwaki, Kenjiro Terada (Japan)	[B30264]

3C2	Sł	nape and Topology Optimization2		ID
Meeting room 3	Chair	s:Shutian Liu (Dalian University of Techn	ology), Kentaro Yaji (Osaka Ui	niversity)
10:10- 10:30	3C2-1	Variable stiffness design optimization of composite laminates based on modified adaptive normal distribution fiber optimization interpolation scheme with minimizing structural compliance	*Zunyi Duan , Yi Liu , Hao Jin , Bin Xu, Jihong Zhu , Jun Yan (China)	[B10280]
10:30- 10:50	3C2-2	Data-driven topology design for a turbulence problem finalized by shape optimization	*Kazuya Urata, Kentaro Yaji , Kikuo Fujita (Japan)	[B60461]
10:50- 11:10	3C2-3	Topology optimization based on peridynamics for the fracture resistance	*Yuan Liu, Weisheng Zhang,	[A10476]
11:10- 11:30	3C2-4	Inverse motion analysis-based topology optimization design of elastic structures with desirable output forces	*Weipeng Xu (China)	[B30465]
3D2	A	pproximations, Surrogates, and Metamodeling		ID
Meeting room 5	Chai	rs:Xiaogang Wang (Hunan University), Ma Science)	akoto Yamakawa (Tokyo Univ	ersity of
10:10- 10:30	3D2-1	Developing prediction models for washing machine performance: advanced feature engineering and tailored evaluation metrics for limited data	Jaehyun Jung, Young-Jin Kang, Ju Chan Yuk, Suk Hee Park, Han Kim, Byungju Min, *Yoojeong Noh (Korea)	[D30573]
10:30- 10:50	3D2-2	Real-time topology optimization based on principal stress information	Jun Yan, *Mengfang Zhou (China)	[B60353]
10:50- 11:10	3D2-3	A parameterized stiffener layout optimization method based on radial basis functions	Peng Wei, *Dingkun Chen, Xueping Li, Cheng Su (China)	[B40482]
11:10- 11:30	3D2-4	Problem-independent machine learning enhanced large-scale topology optimization	*Mengcheng Huang, Zongling Du, Chang Liu, Xu Guo (China)	[B60521]
	A			
3E2	Optin	mization in Engineering Applications		ID
Meeting room 6	Chair	s:MasatoshiShimoda (Toyota Technolog Polytechnical Ur	ical Institute),Fei-Fan Li(North niversity)	western

1	ERSIT	05
H		בב סו
1	d a	- 1.

10:10- 10:30	3E2-1	Machine-learning-based asymptotic homogenisation/localisation and design of spatially-varying lattice configurations	*Yichao Zhu(China)	[E50328]
10:30- 10:50	3E2-2	Research on concrete spalling mechanism and parameter optimization under fire and firewater	*Xinke Wang, Ke Wang, Tianshui Liang (China)	[E50529]
10:50- 11:10	3E2-3	Optimization of micro-shell structures in 3D macrostructure	*Rina Nagai, Masatoshi Shimoda (Japan)	[E50449]
11:10- 11:30	An interlocking joints generation 3E2-4 method for multi-component topology optimization in two dimensions		*Yukun Feng, Takayuki Yamada (Japan)	[E20325]
	·			
3F2		Industrial applications		ID
Meeting room 7	Cha	irs:Yohei Yokosuka(Kagoshima Universit Technology),KentaroYaji(y), Yahui Zhang (Dalian Unive Osaka University)	rsity of
10:10- 10:30	3F2-1	Optimization of the shape memory alloy-based hybrid structures: design and test of the self-actuating serrated nozzles in aircraft engines	*Yahui Zhang, Zeying Yang, Yang Wang, Jihong Zhu, Weihong Zhang(China)	[E70564]
10:30- 10:50	3F2-2	Layout design of hybrid core sandwich panel considering penetration constraints and maximum size constraints via multi-material topology optimization	*Yongbin Huang, Tong Gao, Longlong Song, Yang Li, Pingchu Fang, Weihong Zhang (China)	[F10369]
10:50- 11:10	3F2-3	Topology optimization of in-wheel motor with halbach array	*Taehoon Jung, Jaewook Lee (Korea)	[F50363]

Wednesday, May 22 14:00-15:40

3A3	Optimization Methods			ID
Meeting room 1	Cł	nairs:Kun Yan (Dalian University of Techno Technolog	ology), Pai Liu (Dalian Univers ₃ y)	sity of
14:00- 14:20	3A3-1	Fundamental study on curve-fitting topology optimization of hyperelastic microstructures considering numerical stabilization	*Tomoaki Shimada,Yuya Okuda, Daiki Watanabe, Hiroya Hoshiba, Koji Nishiguchi, Junji Kato (Japan)	[B30352]
14:20- 14:40	3A3-2	Topology optimization of microchannel with rib geometry	*Hithaish Doddamani,Ryotaro Ikematsu, Kentaro Yaji (Japan)	[B70517]
14:40- 15:00	3A3-3	Integrated topology and size optimization for frame structures considering overall mechanical requirements	*Lei Zhao, Jiaxin Zheng, Jinhu Cai, Zhijun Zhao, Jijun Yi, Jianhua Rong (China)	[B40401]
15:00- 15:20	3A3-4	Structural topology optimization method with beam features of multiple cross-sections	*Jie Wang, Weihong Zhang(China)	[B40400]
15:20- 15:40	3A3-5	A novel explicit design method for complex thin-walled structures based on embedded solid moving morphable components	*Wendong Huo, Chang Liu, Xu Guo(China)	[A10523]
3B3	Sł	nape and Topology Optimization1		ID
Meeting room 2	Cha	irs:Zheng Li (Dalian University of Techno	logy), Junji Kato(Nagoya Uni	versity)
14:00- 14:20	3B3-1	An integrated isogeometric analysis framework for buckling optimization of grid-stiffened shells utilizing asymptotic homogenization and rayleigh-ritz methods	*Yu Sun (China)	[B10479]
14:20- 14:40	3B3-2	Topology optimization to maximize nonlinear buckling load factor with stress and stiffness constraints	*Keisuke Imoto, Hiroya Hoshiba, Hisao Uozumi, Koji Nishiguchi, Junji Kato (Japan)	[B40348]

14:40- 15:00	3B3-3	A dynamic structural optimization method with approximate dynamic response sensitivity using equivalent static loads	*Delin Cao, Yan Zeng, Gang Li (China)	[D20322]
15:00- 15:20	3B3-4	An ODE-driven boundary penalization method	*Yang Liu, Hongyuan Ren, Bo Xia, Jianbin Du (China)	[B40293]
15:20- 15:40	3B3-5	A BIM-based collaborative framework for integrating multi-domain assessment in the design of disaster prevention structures	*Lini Xiang, Gang Li, Haijiang Li (China)	[B40497]
	•			
3C3	Sł	nape and Topology Optimization2		ID
Meeting room 3	Chai	rs:Chang Liu (Dalian University of Techno	ology), Kentaro Yaji (Osaka Un	iversity)
14:00- 14:20	3C3-1	Explicit optimization design of complex thin-walled structures based on computational conformal Mmapping and moving morphable component approach	*Chang Liu, Xu Guo (China)	[B40513]
14:20- 14:40	3C3-2	Multiobjective shape optimization of self-contacting structures	*Mai Morikawa, Masatoshi Shimoda (Japan)	[B40463]
14:40- 15:00	3C3-3	Adhesion reduction at solid/liquid interfaces by using topologically optimized micro-textures	*Zhen Li, Yongbo Deng(China)	[B20509]
15:00- 15:20	3C3-4	A velocity field level set topology optimization under stress constraints	*Wei Cheng, Yaguang Wang , Xiaopeng Zhang (China)	[B40493]
15:20- 15:40	3C3-5	Design of graded stochastic cellular structure based on the homogenization method	*Lianxiong Chen, Hui Liu(China)	[B10548]
3D3	A	Approximations, Surrogates, and Metamodeling		ID
Meeting room 5	Chairs	Bin Niu (Dalian University of Technology). Bin Niu (Dalian University of Science	r), Makoto Yamakawa (Tokyo e)	University
14:00- 14:20	3D3-1	Data-driven topology optimization of spatially varying cellular structures	*Bin Niu, Hongchao Zhang , Detian Tie , Siyuan Xu (China)	[B60434]

14:20- 14:40	3D3-2	Functionally graded heat sink design based on data-driven multiscale topology optimization	"*Shun Noguchi, Naoyuki Ishida, Ayami Sato, Haruki Motegi, Takahiro Shimada, Shinji Nishiwaki, Kazuhiro Izui (Japan) "	[B10360]
14:40- 15:00	3D3-3	Data-driven topology design incorporating pix2pix with fragmentation learning	*Yusibo Yang, Ryuichiro Hashimoto, Kentaro Yaji*, Shintaro Yamasaki, Kikuo Fujita (Japan)	[B60385]
15:00- 15:20	3D3-4	Evaluating generalization performance of boundary-informed cGANs for continuum topology optimization	*On Takahashi, Kazuki Hayashi , Makoto Ohsaki (Japan)	[B60438]
15:20- 15:40	3D3-5	Machine learning enhanced high- precise multiresolution discrete variable topology optimization method	*Yuan Liang, Mingshuo Zhang, Mengcheng Huang, GengdongCheng, Xu Guo (China)	[B10474]
		·		
3E3	Opti	nization in Engineering Applications		ID
3E3 Meeting room 6	Opti Cha	mization in Engineering Applications airs:Masatoshi Shimoda (Toyota Technol University of Tecl	ogical Institute), Yichao Zhu (hnology)	ID Dalian
3E3 Meeting room 6 14:00- 14:20	Optin Cha 3E3-1	mization in Engineering Applications airs:Masatoshi Shimoda (Toyota Technol University of Tecl A Shell-lattice pipeline-crawling soft robot	ogical Institute), Yichao Zhu (hnology) *Di Guo,Yiqiang Wang, Zhan Kang(China)	ID Dalian [E40574]
3E3 Meeting room 6 14:00- 14:20 14:20- 14:40	Optin Cha 3E3-1 3E3-2	mization in Engineering Applications airs:Masatoshi Shimoda (Toyota Technol University of Tech A Shell-lattice pipeline-crawling soft robot Actuator placement optimization for vibration control of large truss structure aiming at robustness	ogical Institute), Yichao Zhu (hnology) *Di Guo,Yiqiang Wang, Zhan Kang(China) *Kaiwen Quan, Shenyan Chen(China)	ID Dalian [E40574] [E60418]
3E3 Meeting room 6 14:00- 14:20 14:20- 14:40 14:40- 15:00	Optin Cha 3E3-1 3E3-2 3E3-3	mization in Engineering Applications airs:Masatoshi Shimoda (Toyota Technol- University of Tech A Shell-lattice pipeline-crawling soft robot Actuator placement optimization for vibration control of large truss structure aiming at robustness Topology and orientation optimization of fiber-reinforced composites with coexisting orthogonal orientations and their experimental validation	ogical Institute), Yichao Zhu (hnology) *Di Guo,Yiqiang Wang, Zhan Kang(China) *Kaiwen Quan, Shenyan Chen(China) *Saito Ishiue, Akihiro Takezawa, Tsuguo Kondoh (Japan)	ID Dalian [E40574] [E60418] [E20526]
3E3 Meeting room 6 14:00- 14:20 14:20- 14:40- 15:00- 15:00- 15:20	Optin Cha 3E3-1 3E3-2 3E3-3 3E3-4	mization in Engineering Applications airs:Masatoshi Shimoda (Toyota Technol University of Tech A Shell-lattice pipeline-crawling soft robot Actuator placement optimization for vibration control of large truss structure aiming at robustness Topology and orientation optimization of fiber-reinforced composites with coexisting orthogonal orientations and their experimental validation Energy absorption of thin-walled tubes with a prefolded origami-inspired structure	ogical Institute), Yichao Zhu (hnology) *Di Guo,Yiqiang Wang, Zhan Kang(China) *Kaiwen Quan, Shenyan Chen(China) *Saito Ishiue, Akihiro Takezawa, Tsuguo Kondoh (Japan) *Xin Chen (China)	ID Dalian [E40574] [E60418] [E20526] [F30336]

MULER BUTY OF 7

3F3	Industrial applications			ID
Meeting room 7	Chairs:Yahui Zhang (Dalian University of Technology), KentaroYaji (Osaka Univ			
14:00- 14:20	3F3-1	Realization of square cell periodic structure with negative thermal expansion coefficient by multi-material topology optimization based on topological derivatives of thermal strain	*Masaki Noda, Takayuki Yamada (Japan)	[B30368]
14:20- 14:40	3F3-2	Uniform multiple laminates interpolation (UMLI) method for angle optimization of double-double (DD) composite laminates based on multi- material topology optimization strategy	*Pingchu Fang, Tong Gao, Dan Wang, Weihong Zhang (China)	[B30310]
14:40- 15:00	3F3-3	Multi-physical invisibility cloak design based on explicit topology optimization and compatible boundary conditions	*Xubing Cheng, Zongliang Du, Chang Liu, Xu Guo (China)	[B20531]
15:00- 15:20	3F3-4	Integrated optimization of piezo- embedded compliant structures considering fundamental frequency constraints	*Mingze Wang, Jingyu Hu, Yunfeng Luo, Shutian Liu (China)	[B30492]
15:20- 15:40	3F3-5	Topology optimization for all- solid-state-batteries considering a conductive additive	*Naoyuki Ishida, Kozo Furuta, Masashi Kishimoto, Kazuhiro Izui, Hiroshi Iwai, Shinji Nishiwaki (Japan)	[F70442]

Wedn	esda	y, May 22 16:00-17:20
3A4		Optimization Methods
Meeting room 1	Cł	nairs:Xiaodong Huang (Swinburr Universi
16:00- 16:20	3A4-1	Structural topology optimizatic considering uniformity of norm deformation
16:20- 16:40	3A4-2	Topology optimization method vibrating structures and phono crystals with prescribed freque forbidden bands
16:40- 17:00	3A4-3	Fast frequency response topolo optimization for viscoelastic str based on high order Krylov sub method
3B4	Sł	hape and Topology Optimizati
3B4 Meeting room 2	Sł Cha	nape and Topology Optimizati
3B4 Meeting room 2 16:00- 16:20	Sł Cha 3B4-1	nape and Topology Optimization irs:Zheng Li (Dalian University of Bridging topological results and walled frame structures consider manufacturability
3B4 Meeting room 2 16:00- 16:20 16:20- 16:40	SH Cha 3B4-1 3B4-2	ape and Topology Optimization irs:Zheng Li (Dalian University of Bridging topological results and walled frame structures consider manufacturability A novel topology optimization of of natural frequency of grid Pla vibration isolation structure bas on moving morphable comport method
3B4 Meeting room 2 16:00- 16:20 16:20- 16:40- 16:40- 17:00	SH Cha 3B4-1 3B4-2 3B4-3	ape and Topology Optimization irs:Zheng Li (Dalian University of Bridging topological results and walled frame structures consider manufacturability A novel topology optimization of of natural frequency of grid Pla vibration isolation structure base on moving morphable components method Stabilized time-series moving morphable components method topology optimization
3B4 Meeting room 2 16:00- 16:20 16:20- 16:40 16:40- 17:00	SH Cha 3B4-1 3B4-2 3B4-3	hape and Topology Optimization irs:Zheng Li (Dalian University of Bridging topological results and walled frame structures consider manufacturability A novel topology optimization of of natural frequency of grid Pla vibration isolation structure base on moving morphable component method Stabilized time-series moving morphable components method topology optimization
3B4 Meeting room 2 16:00- 16:20 16:20- 16:40 16:40- 17:00 3C4	SH Cha 3B4-1 3B4-2 3B4-3 SH	nape and Topology Optimization irs:Zheng Li (Dalian University of Bridging topological results and walled frame structures consider manufacturability A novel topology optimization of of natural frequency of grid Pla vibration isolation structure bas on moving morphable component method Stabilized time-series moving morphable components methor topology optimization

Technology), Junpeng Zhao(Beihang University)

16:00- 16:20	3C4-1	A high-resolution topology optimization framework for composite structures with spatially varying fiber orientations	*Junpeng Zhao, Tianyuan Qi, Chunjie Wang (China)	[B30486]
16:20- 16:40	3C4-2	Topology optimization method with variable design method	*Daiki Yamane, Masatoshi Shimoda (Japan)	[B40462]
16:40- 17:00	3C4-3	Design optimization of vibrating lattice plate structures	*Haotian Wang, Bin Niu (China)	[B10436]
3D4	A	pproximations, Surrogates, and Metamodeling		ID
Meeting room 5	Cha	airs:Bin Niu(Dalian University of Technolo University	ogy), Yoojeong Noh (Pusan Na /)	ational
16:00- 16:20	3D4-1	Problem-independent machine learning enhanced high-fidelity stress calculation method for discrete variable topology Optimization	*Zhenzeng Lei,Yuan Liang, Dixiong Yang (China)	[A10249]
16:20- 16:40	3D4-2	Shape and topology optimization of truss structure using design variable reduction strategies	*Lidong Zhu,Jingyao Zhang (Japan)	[B40374]
16:40- 17:00	3D4-3	Generating solutions for laplace equations by using physics-guided generative adversarial networks	*Zoho Gi,Katsuyuki Suzuki, Kazuo Yonekura (Japan)	[B60480]
3E4	Optir	nization in Engineering Applications		ID
Meeting room 6	Cha	airs:MasatoshiShimoda (Toyota Technolo University of Tecl	ogical Institute), Yichao Zhu (hnology)	Dalian
16:00- 16:20	3E4-1	Basic study of topology optimization of three dimensional phononic crystals with band gap in high frequency range	*Naoki Murai, Takayuki Yamada (Japan)	[E40318]
16:20- 16:40	3E4-2	A novel lamination sintering method to prepare TiC particle-reinforced titanium matrix composites with different C content	*Ning Wan,Yongbum Choi, Kazuhiro Matsugi (Japan)	[F10468]
16:40- 17:00	3E4-3	Optimal design of lattice structures in composites for maximization of shear stiffness	*Kenta Imanishi,Hiroya Hoshiba, Hiroki Ogura, Koji Nishiguchi , Junji Kato (Japan)	[E20439]

3F4	Industrial applications	
Meeting room 7	Chairs:Yohei Yokosuka (Kagosh	
16:00- 16:20	3F4-1	Topology optimization of the 3 conduction structure via the ad feature-driven method
16:20- 16:40	3F4-2	EMsFEM based concurrent topo optimization method for hierar structure with multiple substru
16:40- 17:00	3F4-3	Discrete topology optimization non-proportionally damped str under harmonic excitation
17:00- 17:20	3F4-4	Multiscale topology optimization coated structures with multiple connected infilling microstruction

